Saturday, 19 March 2011

Surface geology

Mercury’s surface is overall very similar in appearance to that of the Moon, showing extensive mare-like plains and heavy cratering, indicating that it has been geologically inactive for billions of years. Since our knowledge of Mercury's geology has been based on the 1975 Mariner flyby and terrestrial observations, it is the least understood of the terrestrial planets.[21] As data from the recent MESSENGER flyby is processed this knowledge will increase. For example, an unusual crater with radiating troughs has been discovered which scientists are calling "the spider."[31]

Albedo features refer to areas of markedly different reflectivity, as seen by telescopic observation. Mercury possesses Dorsa (also called "wrinkle-ridges"), Moon-like highlands, Montes (mountains), Planitiae, or plains, Rupes (escarpments), and Valles (valleys).[32][33]

Mercury was heavily bombarded by comets and asteroids during and shortly following its formation 4.6 billion years ago, as well as during a possibly separate subsequent episode called the late heavy bombardment that came to an end 3.8 billion years ago.[34] During this period of intense crater formation, the planet received impacts over its entire surface,[33] facilitated by the lack of any atmosphere to slow impactors down.[35] During this time the planet was volcanically active; basins such as the Caloris Basin were filled by magma from within the planet, which produced smooth plains similar to the maria found on the Moon.[36][37]

Data from the October 2008 flyby of MESSENGER gave researchers a greater appreciation for the jumbled nature of Mercury's surface. Mercury's surface is more heterogeneous than either Mars' or the Moon's, both of which contain significant stretches of similar geology, such as maria and plateaus.[38]
Impact basins and craters
Mercury’s Caloris Basin is one of the largest impact features in the Solar System.

Craters on Mercury range in diameter from small bowl-shaped cavities to multi-ringed impact basins hundreds of kilometers across. They appear in all states of degradation, from relatively fresh rayed craters to highly degraded crater remnants. Mercurian craters differ subtly from lunar craters in that the area blanketed by their ejecta is much smaller, a consequence of Mercury's stronger surface gravity.[39]

The largest known crater is Caloris Basin, with a diameter of 1,550 km,.[40] The impact that created the Caloris Basin was so powerful that it caused lava eruptions and left a concentric ring over 2 km tall surrounding the impact crater. At the antipode of the Caloris Basin is a large region of unusual, hilly terrain known as the "Weird Terrain". One hypothesis for its origin is that shock waves generated during the Caloris impact traveled around the planet, converging at the basin’s antipode (180 degrees away). The resulting high stresses fractured the surface.[41] Alternatively, it has been suggested that this terrain formed as a result of the convergence of ejecta at this basin’s antipode.[42]

Overall, about 15 impact basins have been identified on the imaged part of Mercury. A notable basin is the 400 km wide, multi-ring Tolstoj Basin which has an ejecta blanket extending up to 500 km from its rim and a floor that has been filled by smooth plains materials. Beethoven Basin has a similar-sized ejecta blanket and a 625 km diameter rim.[39] Like the Moon, the surface of Mercury has likely incurred the effects of space weathering processes, including Solar wind and micrometeorite impacts.[43]
Plains
The so-called “Weird Terrain” was formed by the Caloris Basin impact at its antipodal point.

There are two geologically distinct plains regions on Mercury.[39][44] Gently rolling, hilly plains in the regions between craters are Mercury's oldest visible surfaces,[39] predating the heavily cratered terrain. These inter-crater plains appear to have obliterated many earlier craters, and show a general paucity of smaller craters below about 30 km in diameter.[44] It is not clear whether they are of volcanic or impact origin.[44] The inter-crater plains are distributed roughly uniformly over the entire surface of the planet.

Smooth plains are widespread flat areas which fill depressions of various sizes and bear a strong resemblance to the lunar maria. Notably, they fill a wide ring surrounding the Caloris Basin. Unlike lunar maria, the smooth plains of Mercury have the same albedo as the older inter-crater plains. Despite a lack of unequivocally volcanic characteristics, the localisation and rounded, lobate shape of these plains strongly support volcanic origins.[39] All the Mercurian smooth plains formed significantly later than the Caloris basin, as evidenced by appreciably smaller crater densities than on the Caloris ejecta blanket.[39] The floor of the Caloris Basin is filled by a geologically distinct flat plain, broken up by ridges and fractures in a roughly polygonal pattern. It is not clear whether they are volcanic lavas induced by the impact, or a large sheet of impact melt.[39]

One unusual feature of the planet’s surface is the numerous compression folds, or rupes, which crisscross the plains. As the planet’s interior cooled, it may have contracted and its surface began to deform, creating these features. The folds can be seen on top of other features, such as craters and smoother plains, indicating that the folds are more recent.[45] Mercury’s surface is flexed by significant tidal bulges raised by the Sun—the Sun’s tides on Mercury are about 17 times stronger than the Moon’s on Earth.

No comments:

Post a Comment